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This paper derives approximate angle-of-attack statistics suitable for boost-phase structural loading estimates on
unguided, fin-stabilized sounding rockets. Sounding rockets are assumed to lift off with a large constant vertical
acceleration. Their rigid-body rotations are modeled as undamped short-period motions without any velocity vector
rotation; the only source of pitch/yaw torques is via aerodynamic static stability. The vertical acceleration causes the
dynamic pressure to increase rapidly, leading to time-varying coefficients in the short-period equations and,
therefore, gust responses that require nonstationary analyses. Transforming the independent variable from time to
altitude enables calculation of a simple lateral velocity sinusoidal gust impulse response function. Next, the total
response for a single instantiation is found by superposition of all its gust impulses. Then, convolution to find the
variance in transverse velocity is found based on the Dryden gust autocorrelations. A closed-form result for the
standard deviation in boost-phase gust angle of attack is obtained and compared with both its high-altitude
asymptote and the classical sharp-edged (step function) gust response. At altitudes above about two pitch
wavelengths, the asymptote provides an accurate result, whereas the classical sharp-edged gust model significantly
underestimates the gust response, except for regions very near the ground.

Nomenclature

a = axial acceleration, m/s?

Cy, = pitch moment coefficient derivative with respect to
(wyd/20), rad™!

Cye = pitch moment coefficient derivative with respect to
angle of attack, rad™!

Cy, = yaw moment coefficient derivative with respect to
(w,d/2U), rad™!

Cyp = yaw moment coefficient derivative with respect to
angle of sideslip, rad™!

Cyp = Y force coefficient derivative with respect to angle of
sideslip, rad ™!

Cz, = Z force coefficient derivative with respect to angle of
attack, rad™!

d = aerodynamic reference length; body diameter, m

Fy = g component of external force

h = altitude, m

Ip = moment of inertia about the pitch or yaw axis. kg-m?

L = launcher length, m

lg = longitudinal turbulence scale length, m

G = pscudotransverse turbulence scale length, m

My =y component of external moment

m = rocket mass, kg

q = dynamic pressure, kg/m>

R = autocorrelation function, m®/s”

S = acrodynamic reference area, m?

t = time from liftoff, s

U = axial (x axis) velocity, m/s

Ve = wind (gust) velocity in the z direction, m/s

Vy = inertial velocity in the z direction, m/s

var() = varance of (); mean square of (); ((){()))?).

X, ¥,z = body-fixed axes, x (roll) along the axis of symmetry, y

and z (pitch & yaw) forming an orthogonal triad
Z = altitude dummy variable, m
= angle of attack, rad
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Ag = transverse turbulence (gust) reciprocal scale
length, m™!

Ap = pitch/yaw wave number, rad/m
P = atmospheric mass density, kg/m?
0G = standard deviation in wind (gust) velocity, m/s
a, = planar standard deviation in angle of attack, rad
wy = angular rates about the pitch axis, rad/ sec
(), = value of () at the time of separation from the launcher
() = ensemble average of ()

Note that the right-hand rule is the sign convention used for

moments and angular rates.

Introduction

HE main motivation behind this analysis is the estimation of

sounding rocket boost-phase structural loads. Sounding rocket
structural loads are driven by two kinds of perturbation: these due to
the various structural misalignments that are best considered in a
body-fixed frame and those due to atmospheric motions that are most
casily analyzed in an Earth-fixed frame. Atmospheric motions, in
turn, have two very different varieties: synoptic scale winds and gusts
[1.2]. The atmospheric motions due to weather are called winds. For
the most part, winds tend to blow in a nearly horizontal direction.
They are characterized by correlation over large distance scales,
often thousands of kilometers, and slow temporal rates of change
over several days. The other variety of motion, gusts, arises from
turbulent mixing within the atmosphere. When remote from the
ground, gusts are threc-dimensional and commonly considered
isotropic. Their correlation distance scale is only hundreds of meters,
and their temporal correlation scale is tens of seconds.

Sounding rockets initially encounter synoptic scale (weather)
winds at the bottom of the planetary boundary layer where their
velocities are small [1]. Therefore, winds can be safely neglected in
estimating boost phase structural loads. On the other hand, based on
experience [3]. atmospheric gusts are the dominant Earth-fixed
perturbations  influencing sounding rocket structural loads.
Turbulence (mixing) can be especially intense low in the planetary
boundary layer, thus leading to significant structural loading in the
carly phases of rocket flight.

This analysis is in three parts. First, the response to an impulsive
gust is found by integrating the approximate equations of motion.
These are lincar with time-varying coefficients due to the rapid
increase of dynamic pressure immediately after launch. Changing
the independent variable from time to altitude generates equations
with constant coefficients. The response to an impulsive gust is then
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estimated. Second, gust statistics are described as Gaussian, frozen,
isotropic, and stationary with an approximate Dryden autocorrela-
tion function [1,4]. The Dryden autocorrelation function is used
because, although it is empirical, it is simple in form, and it captures
gust behavior reasonably well. The assumption of a frozen
turbulence field is easy to justify because rockets accelerate through
the atmosphere much faster than gusts evolve. Third, the impulse
response and autocorrelation function are convolved to estimate the
gust angle-of-attack standard deviation.

This is a simplified analysis. The ultimate rationale for its adoption
is that the angle-of-attack response depends on gust (not wind)
velocity statistics, which are known to be functions of location,
season, and atmospheric synoptic state [1]. Because there is little or
no long-term a priori launch day knowledge of some of these
variables, there is no great value in using highly accurate models if
the result is necessarily corrupted by inaccurate environmental
knowledge. Classically, gust responses have been modeled using a
sharp-edged step function or a 1 — cosine function. But, no such
deterministic gusts are found in nature. It follows that responses
estimated from such gust models should be viewed with very low
confidence. The purpose of this paper, then, is to develop a simple,
easy-lo-use, physics-based estimate of sounding rocket boost-phase
cust response statistics.

Impulsive Gust Response

The coordinate frame used in this analysis, shown in Fig. 1, is
Earth-fixed in roll but allowed to pitch and yaw with the rocket body.
Its origin follows the rocket center of mass as it accelerates under the
influence of thrust. The idea is to keep the Earth-fixed perturbing
effects, synoptic winds, and gusts in an invariant plane in the
coordinate system.

The key assumptions are as follows. First, the rocket configuration
can be characterized as slender with pitch-yaw symmetry. The
rocket’s roll moment of inertia is negligibly small compared with the
pitch/yaw moment of inertia because its fineness ratiois 12 to 20, and
the pitch moment of inertia over the roll moment of inertia =~
fineness ratio squared. Next, @y and o are both small compared with
unity; sounding rocket short-period motions are dynamically very
linear with a few stark, shocking exceptions, such as roll lock-in. The
only significant aerodynamic pitch/yaw moments and forces are
those due to static stability (Cyy , and Cy g). According to Etkin [S], if
the roll moment of inertia is negligibly small compared with the
pitch/yaw moments of inertia, the dynamic equations of motion then
decouple into a pitch set and a yaw set, thus greatly simplifying the
analysis. The component of gravity along the y and z axes may be
neglected because we have implicitly restricted our attention to short-
period motion, and gravity, apart from its affect on axial acceleration,
can be neglected as it primarily influences the trajectory itself
(phugoid mode).

Also, the rocket’s short-period damping, although positive, almost
vanishes; thatis, terms in Cy; ,, Cz 4, Cy,, Cy g, and jet damping may
be neglected. Direct numerical analysis of several typical sounding
rocket configurations [3] shows that their short-period damping is
usually less than 1% of critical. The neglected damping terms are not
literally zero; they are merely very tiny. The small short-period
damping ensures that the effects of a gust can be observed ringing

Y
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Fig. 1 Coordinate frame.

long after the original encounter. A simple calculation shows that, for
damping equal to about 1% of critical, it will take almost two pitch
wavelengths for a transient gust response to lose 10% of its
amplitude. In other words, because the actual short-period damping
is usually less than 1% of critical, as long as we restrict ourselves to
altitudes near the launcher, neglecting short-period damping ought to
be a lairly good approximation.

A large, constant axial acceleration implies the equations have
profoundly time-varying coefficients. Changes in rocket mass, air
density, center-ol-gravity shifts, and Mach-number-driven variations
in stability derivatives are neglected, leaving the change in dynamic
pressure as the dominant cause of time-varying coefficients.

Etkin [5] provides the source for the rocket’s equations of motion,
starting with the assumed solution for constant acceleration:

U=at=+~2ah (1)

Then, the approximate short-period pitching and plunging equations,
written for nonrolling axes otherwise fixed to a rigid body. can be
readily found [5] neglecting pitching and plunging damping:

Ve
My = Ipdwy/df = qS(!CMu(a - ;) and 8

Fy/m=dV, /dt—Uw, =0

Using the customary definitions of the angle of attack, & = V, /U,
and of the dynamic pressure, ¢ = % pU?, it is found that

and dV,/dr— Uwy, =0

3

An important simplification results from changing the independent
variable from time to distance along the flight path, which, if vertical
flight is assumed, amounts to altitude. Using the chain rule to obtain
linear equations of motion with constant coefficients per Hoult [6],

1
Ipdwy /di = 2 pSdCy (U(Vz — Vo).

d/dt =dh/dt «dfdh,  dh/dt= Ud/dh

Then,
1
Ipdwy /dh = ideCMo(VZ —Vg), and dVy/dh—wy =0
Defining the pitch wave number A p in radians per meter,

1
hp=—50SdCya/lp )

we have

dwy/dh=—-A23(V,— V), and dV,/dh—w, =0 (5)

Eliminating wy from this pair, we find
d?V,/dh? + A3V, = A3V (6)

Next, solutions to Eq. (6) are needed for an arbitrary gust profile
Vi (h). Now, suppose V(71) vanishes everywhere except for in an
infinitesimal slice of altitude starting at altitude n and ending slightly
higher at altitude 7 - d/. Suppose the gust impulse amplitude in this
altitude region is V. Then, the impulsive gust solution to Eq. (6),
valid for altitudes /2 above 7 is

Vy =kpVe(m) sin[Ap(h — 1)) (7N

Decompose any arbitrary gust profile V;(h) into a set of layered
impulse functions. Then, because Eq. (6) is linear, the total V,(4) is
just a superposition of all the gust impulses acting at altitudes
below /2

i
Vath) =2y [ Vol sinfip = ®)




Gust Phenomenology

In general, a power spectral density (PSD) plot of the atmospheric
wind field [2] will show two major peaks associated with processes
for turbulence (gusts) and weather (synoptic scale winds). Synoptic
scale winds are constrained by gravity to lie in the horizontal plane,
whereas gusts tend to be fully three-dimensional and isotropic when
not too close to the ground. Typical distance scales are 4000 km for
weather and 600 m outside the planetary boundary layer for gusts.
Four temporal orders of magnitude also separate these processes.
Although both are of interest to a rocket engineer, gusts usually
contribute significantly more to the angle-of-attack response.

Now, consider the issue ol stationarity. For many aerospace
applications (aircraft and large rockets), it is reasonable to assume
stationary statistical processes and to exploit the benefits of
frequency domain analyses. Sounding rockets, however, are a breed
aparl. Their large axial acceleration implies large changes in flight
condition while ringing from earlier gusts is still happening.
Therefore, a nonstationary analysis is required. That is, we must
work with autocorrelation functions rather than PSD functions to
describe gust statistics.

During World War II, Dryden [4] showed empirically that the
longitudinal autocorrelation function fer wind-tunnel turbulence
could be accurately described by a simple exponential function of the
separation distance together with Gaussian statistics. 1t should be
noted that the Dryden PSD has an asymptotic log-log slope of —2.
Later, the Kolmogorov model [5] showed, by applying dimensional
analysis to turbulence cascades, that the asymptotic log-log slope
should be —5/3. Much of the available empirical data would fit either
model equally well. The clincher is that the inverse Fourier transform
of the Kolmogorov PSD (to find the autocorrelation function) yields
difficult-to-use Bessel functions [5]. The Dryden exponential
autocorrelation is simple and easy-to-use and has, therefore, been
chosen for this analysis. Even though Dryden’s original research is
almost 70 years old, it 1s still useful for gust response analyses [1,5].
However, for the cumrent application [1,5], the transverse
autocorrelation function (relation between two gust velocities
normal to the unperturbed velocity vector) is what’s needed.
Fortunately, Batchelor [7] provided a simple relationship between
the two, which is valid for incompressible flow.

The turbulent gust model used here assumes that gusts can be
described with each velocity component having a one-dimensional
Gaussian probability distribution with zero mean. The three
orthogonal velocity components are all statistically independent. We
will assume that the turbulence is isotropic; that is, its properties are
the same in all directions, even though this is not strictly true within
the planetary boundary layer. Turbulence is assumed to be
homogeneous; that is, its statistics are the same everywhere, and it is
stationary with no temporal variation in its properties.

When analyzing vehicles flying through a turbulence field at high
speeds, turbulence can be modeled as frozen; that 1s, its properties do
not change significantly while the rocket flies from one altitude to a
higher one. Then, temporal correlations can be neglected, leaving
only spatial ones.

In a longitudinal gust autocorrelation function, the two velocities
are separated and collinear, whereas, for a transverse gust
autocorrelation function, the two velocities are parallel but offset
from each other. The Dryden longitudinal gust autocorrelation
function [1,4,5] is

R =02 exp(—Ax/lg) Gy

and the corresponding transverse gust autocorrelation function,
obtained using Batchelor’s theorem [7], is

R=0} exp(—Az/lG)('l f%/_\.z/!&-) (10)

Here, Ax and Az are the absolute values of the longitudinal and
transverse separation distances between the two points whose
velocities are correlated. Because rockets fly nearly vertically, only
the two horizontal vector components cause significant aerodynamic
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Ilig. 2 Transverse autocorrelation function normalized by the gust
velocity variance.

loads, and they are statistically independent [1,5], each with the same
autocorrelation function given by Eq. (10).

As suggested in the literature [1], for the small arguments
commonly encountered in small sounding rocket work, the
transverse autocorrelation function looks a lot like the longitudinal
function with 0.59x as the turbulence scale distance. In any case,
because use of the Dryden function can only be justified by its close
match to the experimental data, this further approximation will give
acceptably accurate results. Then, the pseudoscale distance for
transverse correlation is

It = 0.591 an

Figure 2 shows that this is a fairly close approximation. Here, “R
Exact” is given by Eq. (10), whereas “R Approx” is given by Eq. (9)
but with the modified correlation scale distance of Eq. (11).

The final issue is how to quantify the parameters A; and 0. The
literature [1] provides a modern compilation of how these vary with
their contextual situation. These also vary significantly through the
planctary boundary layer as also described in the literature [8].
Without more specific insights, one could take typical values [1,8]
above 200 m altitude in the planetary boundary layer as

og=1m/s, and [;=300m
Then, hg =300 m~' =0.003333 m~' (longitudinal) and A} =
1/(0.59 % 300 m) = 0.005650 m~" (transverse).

Gust Response Statistics

First, because gusts have zero mean velocity [1,5], 1e,
(Vg(h)) =0, the mean gust angle of atlack at any altitude will
vanish. However, the variance does not vanish. This situation is
analogous to adrunkard’s random walk on a sidewalk. There is a 50%
chance that each of his steps will be to the right (or left). After a large
number of steps, he will, on average, not have travelled away from his
starting point. But the variance (mean square) in the distance
travelled is independent of right vs left, and it continues to increase
without bound. Sounding rocket gust response statistics behave
exactly the same way.

Using the impulse response function and the approximate Dryden
transverse gust autocorrelation function, the gust lateral velocity
variance is found in a straightforward way. Begin by recalling that V;
is the difference between the full gust velocity and its ensemble
mean. Then, form the variance by squaring Eq. (8) and forming its
ensemble average:

var[V, ()] = Af,( f " V() sinf (h — H)|dH
L
h
o [ Vot i - wlen)
L

Now, we must carry out three operations: multiplication,
integration (summing) over the altitude region, and ensemble
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Fig. 3 Integration region.

averaging. By exercising care, the order in which these three
operations are performed can be varied. Begin by expressing the
integrals as the limit of sums and multiplying them together, term by
term. Next, form the ensemble average of every product term in the
double sum, noting that the Dryden correlation function depends on
the absolute value of the separation distance. Before integration,
examine Fig. 3 caretully. Every product term at (/7, ) on one side of
the 45 deg line is matched by another on the opposite side having the
same value. Thus, the integral over the shaded region of Fig. 3 has the
same value as that over the clear region, and it is only necessary to
integrate over the shaded area in Fig. 3 and multiply by 2. In the
shaded region, n will always be = H, thus removing the need to
consider absolute values in integration.
Finally, pass back to the limit to obtain

var[V, ()] = 21203 / " sinfa, (h — H)Y|dH
e
o [ exoli 0 = sin, (1 — ) a2
H

After integration, we obtain

2
Alos

P G

{xg(h =7 f;Tz;sin{Z)\p(h — L)
P

2 5
2A5 24,

—sin?A b — L) + —E -
1 [p( )] ;\?,+k22 A?,’f';hzz

exp[—Ag(h — L)]
# (L& sin[A, (h — L)] + &, cos[A ,(h — L)})} (13)

Finally, the planar (single component) gust angle of attack standard
deviation 1s just

e var(V.(h)) (14)
U
The consequences of Eq. (14) can easily be explored numerically.
For example, take A% = 0.00565 rad/m (/g = 300 m), the planar
gust velocity standard deviation o, =1 m/s, a typical pitch
wave length = 244 m (.p = 0.02577 rad/m), the launcher length
L. = 4.57 m, and the axial acceleration ¢ = 4.66 g. These numbers
are typical for small sounding rockets [3]. Next, plot the angle of
attack as a function of altitude as shown in Fig. 4. Above altitudes of
about two pitch/yaw wavelengths, the angle of attack is seen to
approach an asymptotic value. This asymptote can be easily found
to be

121% 2
AthUG

o 15
2(1(@ +AF) K

limg, =
h—oo

Thus, Fig. 4 shows that the typical asymptotic planar standard
deviation in gust angle of attack is about 0.008 rad. z% deg.
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Fig. 4 Standard deviation in planar gust angle of attack.
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Numerical studies [3] have shown this result to be insensitive to the
pitch wave number.

Lastly, compare these results with the classical sharp-edged (step
function) gust response. Ignoring any initial overshoot, this becomes

06
o, = (16)
v 2ah

The sharp-edged gust response is shown in Fig. 4.

Discussion

Several remarks are now appropriate. The sounding rocket boost-
phase gust angle of attack model presented in this paper relies on
several key assumptions. The most important include neglecting
short-period damping and the use of an approximate isotropic
turbulence model for flight in the planetary boundary layer. Errors
due to these two can be roughly estimated to be ~15% each.
Probably the most important source of error arises from the fact that
many sounding rockets are launched from remote regions on poorly
controlled schedules making a priori collection of good geophysical
data nearly impossible, even apart from any challenges in the
measurement of gust data. More sophisticated gust response models
could doubtless be developed, but, because of the uncertainties in the
gust data used, they should not be expected to provide significant
improvement in accuracy.

Conclusions

A simple physics-based estimate of sounding rocket boost-phase
gust angle of attack statistics has been developed and compared with
the older step-function gust model. First, this paper shows that the
standard deviation in planar angle of attack has a transient peak at low
altitude but quickly approaches its constant asymptotic value. The
asymptote provides a simple engineering result suitable for many
practical problems.

Finally, the results show that the sharp-edged step-function gust
model, once commonly used in blind ignorance, is a poor
approximation. The sharp-edged gust model has no mechanism to
accumulate or dissipate short-period gust response energy, an
essential physical feature of the problem. Because short-period
damping has been neglected, the model described in this paper allows
gustresponse energy in the short-period mode to accumulate without
bound. Because sounding rocket powered flight is often brief, there
will usually not be enough time/altitude for damping to remove much
energy. Thus, using the current model will provide conservative
results, especially at higher altitudes.

It is recommended that the results developed here be used in the
future to estimate sounding rocket structural loads during boost
phase.
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